کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
382300 660755 2016 21 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning
ترجمه فارسی عنوان
وظیفه تخصیص کارآمد برای جمعسپاری فضایی: یک رویکرد بهینه سازی جزء به جزء ترکیبی با یادگیری نیمه راهزنی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
کلمات کلیدی
جمعسپاری مکانی؛ وظیفه تخصیص؛ برنامه نویسی کسری ترکیبیاتی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• We introduce min-cost max-reliability assignment problem in spatial crowdsourcing.
• We propose a novel distance-reliability ratio approach to address the problem.
• We extend the proposed approach for dynamic estimation of worker reliabilities.
• We present the performance of algorithms on synthetic and real-world datasets.
• The proposed approach achieves lower travel costs while maximizing the reliability.

Spatial crowdsourcing has emerged as a new paradigm for solving problems in the physical world with the help of human workers. A major challenge in spatial crowdsourcing is to assign reliable workers to nearby tasks. The goal of such task assignment process is to maximize the task completion in the face of uncertainty. This process is further complicated when tasks arrivals are dynamic and worker reliability is unknown. Recent research proposals have tried to address the challenge of dynamic task assignment. Yet the majority of the proposals do not consider the dynamism of tasks and workers. They also make the unrealistic assumptions of known deterministic or probabilistic workers’ reliabilities. In this paper, we propose a novel approach for dynamic task assignment in spatial crowdsourcing. The proposed approach combines bi-objective optimization with combinatorial multi-armed bandits. We formulate an online optimization problem to maximize task reliability and minimize travel costs in spatial crowdsourcing. We propose the distance-reliability ratio (DRR) algorithm based on a combinatorial fractional programming approach. The DRR algorithm reduces travel costs by 80% while maximizing reliability when compared to existing algorithms. We extend the DRR algorithm for the scenario when worker reliabilities are unknown. We propose a novel algorithm (DRR-UCB) that uses an interval estimation heuristic to approximate worker reliabilities. Experimental results demonstrate that the DRR-UCB achieves high reliability in the face of uncertainty. The proposed approach is particularly suited for real-life dynamic spatial crowdsourcing scenarios. This approach is generalizable to the similar problems in other areas in expert systems. First, it encompasses online assignment problems when the objective function is a ratio of two linear functions. Second, it considers situations when intelligent and repeated assignment decisions are needed under uncertainty.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 58, 1 October 2016, Pages 36–56
نویسندگان
, ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت