کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
382301 660755 2016 19 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Unsupervised method for sentiment analysis in online texts
ترجمه فارسی عنوان
روش بدون نظارت برای تجزیه و تحلیل احساسات در متون آنلاین
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
کلمات کلیدی
تجزیه و تحلیل احساسات؛ استخراج نظر. هوش مصنوعی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• Method to predict sentiment in informal texts using unsupervised dependency parsing.
• Algorithm based on sentiment propagation using linguistic content without training.
• Method to create lexicon using polarity expansion algorithm for specific domains.
• Our method compares favorably well with other unsupervised and supervised methods.

In recent years, the explosive growth of online media, such as blogs and social networking sites, has enabled individuals and organizations to write about their personal experiences and express opinions. Classifying these documents using a polarity metric is an arduous task. We propose a novel approach to predicting sentiment in online textual messages such as tweets and reviews, based on an unsupervised dependency parsing-based text classification method that leverages a variety of natural language processing techniques and sentiment features primarily derived from sentiment lexicons. These lexicons were created by means of a semiautomatic polarity expansion algorithm in order to improve accuracy in specific application domains. The results obtained for the Cornell Movie Review, Obama-McCain Debate and SemEval-2015 datasets confirm the competitive performance and the robustness of the system.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 58, 1 October 2016, Pages 57–75
نویسندگان
, , , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت