کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
382404 660760 2014 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Text mining for market prediction: A systematic review
ترجمه فارسی عنوان
معدن متن برای پیش بینی بازار: بررسی سیستماتیک
کلمات کلیدی
تجزیه و تحلیل احساسات، معدن متن رسانه های اجتماعی، تجزیه و تحلیل احساسات، پیش بینی بازار فارکس، پیش بینی سهام بر اساس اخبار
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• Review of essential concepts for market prediction based on online text-mining.
• Review of the cutting-edge work in the literature.
• Identification of main differentiating factors among the available solutions.
• Observations on possible opportunities for future work.

The quality of the interpretation of the sentiment in the online buzz in the social media and the online news can determine the predictability of financial markets and cause huge gains or losses. That is why a number of researchers have turned their full attention to the different aspects of this problem lately. However, there is no well-rounded theoretical and technical framework for approaching the problem to the best of our knowledge. We believe the existing lack of such clarity on the topic is due to its interdisciplinary nature that involves at its core both behavioral-economic topics as well as artificial intelligence. We dive deeper into the interdisciplinary nature and contribute to the formation of a clear frame of discussion. We review the related works that are about market prediction based on online-text-mining and produce a picture of the generic components that they all have. We, furthermore, compare each system with the rest and identify their main differentiating factors. Our comparative analysis of the systems expands onto the theoretical and technical foundations behind each. This work should help the research community to structure this emerging field and identify the exact aspects which require further research and are of special significance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 41, Issue 16, 15 November 2014, Pages 7653–7670
نویسندگان
, , , ,