کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
382466 660763 2016 7 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Sample pair based sparse representation classification for face recognition
ترجمه فارسی عنوان
طبقه بندی بازنمایی پراکنده مبتنی بر جفت نمونه برای تشخیص چهره
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• We proposed a method to use virtual available facial images for face recognition.
• We improved the linear regression classification method for face recognition.
• The classification accuracy on sample pairs are better than that on original samples.
• This method achieves lower classification error rates than many other methods.
• This method performs well even when there are few training samples of each class.

Sparse representation classification, as one of the state-of-the-art classification methods, has been widely studied and successfully applied in face recognition since it was proposed by Wright et al. In this study, we proposed a method to generate virtual available facial images and modified the well-known linear regression classification (LRC) and collaborative representation based classification (CRC) for face recognition. The new method integrates the original and virtual symmetry facial images to form a training sample set of large size. Experimental results show that the proposed method can achieve better performance than most of the competitive face recognition methods, e.g. LRC, CRC, INNC, SRC, RCR, RRC and the method in Xu et al. (2014). This promising performance is mainly attributed to the fact that the sample combination scheme used in the new method can exploit limited original training samples to produce a large number of available training samples and to convey sufficient variations of the original training samples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 45, 1 March 2016, Pages 352–358
نویسندگان
, , , , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت