کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
382710 660781 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Credit scoring using the clustered support vector machine
ترجمه فارسی عنوان
نمره اعتبار با استفاده از دستگاه بردار پشتیبانی از خوشه
کلمات کلیدی
ریسک اعتباری، نمره اعتباری، دستگاه بردار پشتیبانی از خوشه ای، ماشین بردار پشتیبانی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• This study introduces the use of the clustered support vector machine (CSVM) for credit scoring.
• The CSVM has been shown to relax size constraints while remaining highly accurate.
• The results suggest that the CSVM is a useful alternative to kernel SVM approaches when training datasets get large.

This work investigates the practice of credit scoring and introduces the use of the clustered support vector machine (CSVM) for credit scorecard development. This recently designed algorithm addresses some of the limitations noted in the literature that is associated with traditional nonlinear support vector machine (SVM) based methods for classification. Specifically, it is well known that as historical credit scoring datasets get large, these nonlinear approaches while highly accurate become computationally expensive. Accordingly, this study compares the CSVM with other nonlinear SVM based techniques and shows that the CSVM can achieve comparable levels of classification performance while remaining relatively cheap computationally.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 42, Issue 2, 1 February 2015, Pages 741–750
نویسندگان
,