کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
382998 660799 2016 11 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Evolutionary optimization of a multiscale descriptor for leaf shape analysis
ترجمه فارسی عنوان
بهینه سازی تکاملی از یک توصیفگر چند مقیاسی برای تجزیه و تحلیل شکل برگ
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
کلمات کلیدی
شکل تحلیل؛ پردازش تصویر؛ تجسم داده ها؛ بهینه سازی تکاملی؛ طبقه بندی برگ
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• The optimized multiscale bending energy descriptor is suitable to represent leaf shapes.
• Optimization improves the multiscale description of leaf shapes.
• The optimized descriptor improves leaf cluster organization and classification.

Shape analysis and recognition play an important role in the design of robust and reliable computer vision systems. Such systems rely on feature extraction to provide meaningful information and representation of shapes and images. However, accurate feature extraction is not a trivial task since it may depend on parameter adjustment, application domain and the shape data set itself. Indeed, there is a demand for computational tools to understand and support parameter adjustment and therefore unfold shape description representation, since manual parameter choices may not be suitable for real applications. Our major contribution is the definition of an evolutionary optimization methodology that fully supports parameter adjustment of a multiscale shape descriptor for feature extraction and representation of leaf shapes in a high dimensional space. Here, intelligent evolutionary optimization methods search for parameters that best fit the normalized multiscale bending energy descriptor for leaf shape retrieval and classification. The simulated annealing, differential evolution and particle swarm optimization methods optimize an objective function, which is based on the silhouette measure, to achieve the set of optimal parameters. Our methodology improves leaf shape characterization and recognition due to the intrinsic shape differences which are embedded in the set of optimized parameters. Experiments were conducted on public benchmark data sets with the normalized multiscale bending energy and inner-distance shape context descriptors. The visual exploratory data analysis techniques showed that the proposed methodology minimized the total within-cluster variance and thus, improved the leaf shape clustering. Moreover, supervised and unsupervised classification experiments with plant leaves accomplished high Precision and Recall rates as well as Bulls-eye scores with the optimized parameters.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 63, 30 November 2016, Pages 375–385
نویسندگان
, , , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت