کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
383000 660799 2016 15 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Dynamic driver fatigue detection using hidden Markov model in real driving condition
ترجمه فارسی عنوان
تشخیص پویای خستگی راننده با استفاده از مدل مخفی مارکوف در شرایط واقعی رانندگی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• Quantification and objective estimation of driver fatigue in real prolonged driving.
• Simultaneous recording of physiological parameters in wireless and nonintrusive way.
• Develop a dynamic fatigue detection model by multiple features and contexts.

Driver's states in successive time slices are not independent, especially, fatigue is one of a cognitive state that is developing over time. Meanwhile, driver fatigue is also influenced by some corresponding contextual information at a certain time. In such case, classifying driving state at each time slice separately from it in before and after time slices obviously has less meaning. Therefore, a dynamic fatigue detection model based on Hidden Markov Model (HMM) is proposed in this paper. Driver fatigue can be estimated by this model in a probabilistic way using various physiological and contextual information. Electroencephalogram (EEG), Electromyogram (EMG), and respiration signals were simultaneously recorded by wearable sensors and sent to computer by Bluetooth during the real driving. From these physiological information, fatigue likelihood can be achieved using kernel distribution estimate at different time sections. Contextual information offered by specific environmental factors were used as prior of fatigue. As time proceeds, the posterior of fatigue can be gotten dynamically by this HMM-based fatigue recognition method. Based on the results of the method in this paper, it shows that it provides an effective way in detecting driver fatigue.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 63, 30 November 2016, Pages 397–411
نویسندگان
, , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت