کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
383168 660807 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Financial time series pattern matching with extended UCR Suite and Support Vector Machine
ترجمه فارسی عنوان
تطبیق الگوی سری های زمانی مالی با سوئیت طولانی UCR و ماشین بردار پشتیبان
کلمات کلیدی
سری های زمانی مالی؛ تطبیق توالی؛ نقاط ادراکی مهم؛ UCR Suite؛ ماشین بردار پشتیبان
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• We propose a classifier for subsequence pattern matching in financial time series.
• The classifier is based on extended UCR Suite and the Support Vector Machine.
• Our approach achieved significant improvement in terms of speed and accuracy.

Chart patterns are frequently used by financial analysts for predicting price trends in stock markets. Identifying chart patterns from historical price data can be regarded as a subsequence pattern-matching problem in financial time series data mining. A two-phase method is commonly used for subsequence pattern-matching, which includes segmentation of the time series and similarity calculation between subsequences and the template patterns. In this paper, we propose a novel approach for locating chart patterns in financial time series. In this approach, we extend the subsequence search algorithm UCR Suite with a Support Vector Machine (SVM) to train a classifier for chart pattern-matching. The experimental results show that our approach has achieved significant improvement over other methods in terms of speed and accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 55, 15 August 2016, Pages 284–296
نویسندگان
, , , ,