کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
383189 660807 2016 13 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Online recommender system for radio station hosting based on information fusion and adaptive tag-aware profiling
ترجمه فارسی عنوان
سیستم پیشنهاد دهنده آنلاین برای میزبانی ایستگاه رادیویی بر اساس پروفایل بندی آگاه از تگ تلفیقی و تطبیق اطلاعات
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
کلمات کلیدی
سیستم پیشنهاد دهنده موسیقی؛ شبکه رادیویی تعاملی؛ سیستم پیشنهاد دهنده ترکیبی؛ تلفیق اطلاعات؛ پروفایل تطبیقی برچسب؛ بازخورد ضمنی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• A new implicit feedback recommender system for the interactive radio network FMhost.
• A collaborative approach paired with dynamic tag-aware profiles or users and radios.
• An adaptive online learning strategy based on user history and information fusion.
• We compare it with an SVD-based technique in terms of precision, recall, and NDCG.
• Our experiments show that the fusion-based approach demonstrates the best results.

We present a new recommender system developed for the Russian interactive radio network FMhost. To the best of our knowledge, it is the first model and associated case study for recommending radio stations hosted by real DJs rather than automatically built streamed playlists. To address such problems as cold start, gray sheep, boosting of rankings, preference and repertoire dynamics, and absence of explicit feedback, the underlying model combines a collaborative user-based approach with personalized information from tags of listened tracks in order to match user and radio station profiles. This is made possible with adaptive tag-aware profiling that follows an online learning strategy based on user history. We compare the proposed algorithms with singular value decomposition (SVD) in terms of precision, recall, and normalized discounted cumulative gain (NDCG) measures; experiments show that in our case the fusion-based approach demonstrates the best results. In addition, we give a theoretical analysis of some useful properties of fusion-based linear combination methods in terms of graded ordered sets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 55, 15 August 2016, Pages 546–558
نویسندگان
, , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت