کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
383267 660814 2016 11 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
A feature covariance matrix with serial particle filter for isolated sign language recognition
ترجمه فارسی عنوان
یک ماتریس کوواریانس ویژگی با فیلتر ذرات سریال برای به رسمیت شناختن زبان اشاره جدا شده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
کلمات کلیدی
به رسمیت شناختن زبان اشاره؛ ماتریس کواریانس ویژگی؛ فیلتر ذرات سریالی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• A fusion of median and mode filtering for better background model.
• A serial particle filter that can better detect and track the object of interest.
• A novel covariance matrix feature for isolated sign language representation.

As is widely recognized, sign language recognition is a very challenging visual recognition problem. In this paper, we propose a feature covariance matrix based serial particle filter for isolated sign language recognition. At the preprocessing stage, the fusion of the median and mode filters is employed to extract the foreground and thereby enhances hand detection. We propose to serially track the hands of the signer, as opposed to tracking both hands at the same time, to reduce the misdirection of target objects. Subsequently, the region around the tracked hands is extracted to generate the feature covariance matrix as a compact representation of the tracked hand gesture, and thereby reduce the dimensionality of the features. In addition, the proposed feature covariance matrix is able to adapt to new signs due to its ability to integrate multiple correlated features in a natural way, without any retraining process. The experimental results show that the hand trajectories as obtained through the proposed serial hand tracking are closer to the ground truth. The sign gesture recognition based on the proposed methods yields a 87.33% recognition rate for the American Sign Language. The proposed hand tracking and feature extraction methodology is an important milestone in the development of expert systems designed for sign language recognition, such as automated sign language translation systems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 54, 15 July 2016, Pages 208–218
نویسندگان
, , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت