کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
383268 660814 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
PQSAR: The membrane quantitative structure-activity relationships in cheminformatics
ترجمه فارسی عنوان
PQSAR: روابط ساختار ـ فعالیت کمی غشایی در شیمیانفورماتیک
کلمات کلیدی
روابط فعالیت ـ ساختار کمی (QSAR)؛ اندازه گیری شباهت؛ استراتژی جستجوی شباهت ؛ سیستم P؛ فضای جستجو شیمیایی؛ اکتشاف دارو
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• PQSAR is a theoretical similarity searching strategy based on membrane computing.
• Ranking sorting P System was adopted to rank probabilities of similarity dataset.
• It then compares them with the similarity threshold.
• The new strategy is termed a PQSAR model.
• It gives better results in time complexity by using the massive parallelism.

The applications of quantitative structure activity relationships (QSAR) are used to establish a correlation between structure and biological response. Similarity searching is one of QSAR major phases. Innovating new strategies for similarity searching is an urgent task in cheminformatics research for three reasons: (i) the increasing size of chemical search space of compound databases; (ii) the importance of similarity measurements to (2D) and (3D) QSAR models; and (iii) similarity searching is a time consuming process in drug discovery. In this study, we introduce theoretical similarity searching strategy based on membrane computing. It solves time consumption problem. We adopt a ranking sorting algorithm with P System to rank probabilities of similarity according to a predefined similarity threshold. That bio-inspired model, simulating biological living cell, presents a high performance parallel processing system, we called it PQSAR. It relies on a set of rules to apply ranking algorithm on probabilities of similarity. The simulated experiments show how the effectiveness of PQSAR method enhanced the performance of similarity searching significantly; and introduced a standard ranking algorithm for similarity searching.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 54, 15 July 2016, Pages 219–227
نویسندگان
, , ,