کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
383277 660814 2016 11 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Instance selection for regression by discretization
ترجمه فارسی عنوان
انتخاب نمونه برای رگرسیون توسط گسسته سازی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• A new technique for instance selection and noise filtering for regression is proposed.
• The method use instance selection for classification after output value discretization.
• The method is much simpler and more robust to noise than other specifically designed for regression.

An important step in building expert and intelligent systems is to obtain the knowledge that they will use. This knowledge can be obtained from experts or, nowadays more often, from machine learning processes applied to large volumes of data. However, for some of these learning processes, if the volume of data is large, the knowledge extraction phase is very slow (or even impossible). Moreover, often the origin of the data sets used for learning are measure processes in which the collected data can contain errors, so the presence of noise in the data is inevitable. It is in such environments where an initial step of noise filtering and reduction of data set size plays a fundamental role. For both tasks, instance selection emerges as a possible solution that has proved to be useful in various fields. In this paper we focus mainly on instance selection for noise removal. In addition, in contrast to most of the existing methods, which applied instance selection to classification tasks (discrete prediction), the proposed approach is used to obtain instance selection methods for regression tasks (prediction of continuous values). The different nature of the value to predict poses an extra difficulty that explains the low number of articles on the subject of instance selection for regression.More specifically the idea used in this article to adapt to regression problems “classic” instance-selection algorithms for classification is as simple as the discretization of the numerical output variable. In the experimentation, the proposed method is compared with much more sophisticated methods, specifically designed for regression, and shows to be very competitive.The main contributions of the paper include: (i) a simple way to adapt to regression instance selection algorithms for classification, (ii) the use of this approach to adapt a popular noise filter called ENN (edited nearest neighbor), and (iii) the comparison of this noise filter against two other specifically designed for regression, showing to be very competitive despite its simplicity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 54, 15 July 2016, Pages 340–350
نویسندگان
, , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت