کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
383281 660814 2016 11 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Associative learning on imbalanced environments: An empirical study
ترجمه فارسی عنوان
یادگیری مشارکتی در محیط های نامتعادل: یک مطالعه تجربی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
کلمات کلیدی
حافظه انجمنی؛ عدم تعادل کلاس؛ نمونه برداری مجدد
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• We evaluate the performance of associative memories on 31 imbalanced data sets.
• Associative memories are compared to seven classifiers using four re-sampling methods.
• The associative model is among the best classifiers, especially under high imbalance.

Associative memories have emerged as a powerful computational neural network model for several pattern classification problems. Like most traditional classifiers, these models assume that the classes share similar prior probabilities. However, in many real-life applications the ratios of prior probabilities between classes are extremely skewed. Although the literature has provided numerous studies that examine the performance degradation of renowned classifiers on different imbalanced scenarios, so far this effect has not been supported by a thorough empirical study in the context of associative memories. In this paper, we fix our attention on the applicability of the associative neural networks to the classification of imbalanced data. The key questions here addressed are whether these models perform better, the same or worse than other popular classifiers, how the level of imbalance affects their performance, and whether distinct resampling strategies produce a different impact on the associative memories. In order to answer these questions and gain further insight into the feasibility and efficiency of the associative memories, a large-scale experimental evaluation with 31 databases, seven classification models and four resampling algorithms is carried out here, along with a non-parametric statistical test to discover any significant differences between each pair of classifiers.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 54, 15 July 2016, Pages 387–397
نویسندگان
, , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت