کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
383383 660817 2016 7 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers
ترجمه فارسی عنوان
بهبود تشخیص احساسات مبتنی بر BCI با ترکیب انتخاب ویژگی EEG و طبقه بندی کرنل
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• A feature-based emotion recognition model is proposed for EEG-based BCI.
• The approach combines statistical-based feature selection methods and SVM emotion classifiers.
• The model is based on Valence/Arousal dimensions for emotion classification.
• Our combined approach outperformed other recognition methods.

Current emotion recognition computational techniques have been successful on associating the emotional changes with the EEG signals, and so they can be identified and classified from EEG signals if appropriate stimuli are applied. However, automatic recognition is usually restricted to a small number of emotions classes mainly due to signal’s features and noise, EEG constraints and subject-dependent issues. In order to address these issues, in this paper a novel feature-based emotion recognition model is proposed for EEG-based Brain–Computer Interfaces. Unlike other approaches, our method explores a wider set of emotion types and incorporates additional features which are relevant for signal pre-processing and recognition classification tasks, based on a dimensional model of emotions: Valence and Arousal. It aims to improve the accuracy of the emotion classification task by combining mutual information based feature selection methods and kernel classifiers. Experiments using our approach for emotion classification which combines efficient feature selection methods and efficient kernel-based classifiers on standard EEG datasets show the promise of the approach when compared with state-of-the-art computational methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 47, 1 April 2016, Pages 35–41
نویسندگان
, ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت