کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
383534 660824 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enhancing memory-based collaborative filtering for group recommender systems
ترجمه فارسی عنوان
بهبود فیلترهای مشترک مبتنی بر حافظه برای سیستم های پیشنهاد دهنده گروه
کلمات کلیدی
سیستم توصیه شده گروه مشکل تنش تکنیک فیلترینگ همکاری، رویکرد مبتنی بر کاربر، رویکرد مبتنی بر اقلام
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• Enhancing memory-based collaborative filtering techniques for group recommender systems by resolving the data sparsity problem.
• Comparing the proposed method’s accuracy with basic memory-based techniques and latent factor model.
• Makeing accurate predictions for unknown ratings in sparse matrices based on the proposed method.
• More users are satisfied of the group recommender system’s performance.

Memory-based collaborating filtering techniques are widely used in recommender systems. They are based on full initial ratings in a user-item matrix. However, most of the time in group recommender systems, this matrix is sparse and users’ preferences are unknown. This deficiency may make memory-based collaborative filtering unsuitable for group recommender systems. This paper, improves memory-based techniques for group recommendation systems by resolving the data sparsity problem. The core of the proposed method is based on a support vector machine learning model that computes similarities between items. This method employs calculated similarities and enhances basic memory-based techniques. Experiments demonstrate that the proposed method overcomes the memory-based techniques. It also indicates that the presented work outperforms the latent factor approach, which is very efficient in sparse conditions. Finally, it is indicated that the proposed method gives a better performance than existing approaches on generating group recommendations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 42, Issue 7, 1 May 2015, Pages 3801–3812
نویسندگان
, ,