کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
383546 660826 2016 17 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Correlation of job-shop scheduling problem features with scheduling efficiency
ترجمه فارسی عنوان
ارتباط ویژگی های مسئله زمان‌بندی کار کارگاهی با بهره وری زمان‌بندی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
کلمات کلیدی
زمان‌بندی کار کارگاهی ؛ بهره وری زمان‌بندی؛ پیش بینی زمان کامل شدن پردازش ؛ فراگیری ماشین؛ ماشین بردار پشتیبانی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• A set of 380 features are developed for a Job-Shop Scheduling Problem.
• Supervised machine learning and statistical methods used for feature evaluation.
• Features are evaluated for their correlation with optimal makespan.
• Features are used for classification of instances based on optimal makespan.
• Potential application to a real-world manufacturing example is demonstrated.

In this paper, we conduct a statistical study of the relationship between Job-Shop Scheduling Problem (JSSP) features and optimal makespan. To this end, a set of 380 mostly novel features, each representing a certain problem characteristic, are manually developed for the JSSP. We then establish the correlation of these features with optimal makespan through statistical analysis measures commonly used in machine learning, such as the Pearson Correlation Coefficient, and as a way to verify that the features capture most of the existing correlation, we further use them to develop machine learning models that attempt to predict the optimal makespan without actually solving a given instance. The prediction is done as classification of instances into coarse lower or higher-than-average classes. The results, which constitute cross-validation and test accuracy measures of around 80% on a set of 15,000 randomly generated problem instances, are reported and discussed. We argue that given the obtained correlation information, a human expert can earn insight into the JSSP structure, and consequently design better instances, design better heuristic or hyper-heuristics, design better benchmark instances, and in general make better decisions and perform better-informed trade-offs in various stages of the scheduling process. To support this idea, we also demonstrate how useful the obtained insight can be through a real-world application.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 62, 15 November 2016, Pages 131–147
نویسندگان
, ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت