کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
383872 660834 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Applying Moving back-propagation neural network and Moving fuzzy-neuron network to predict the requirement of critical spare parts
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Applying Moving back-propagation neural network and Moving fuzzy-neuron network to predict the requirement of critical spare parts
چکیده انگلیسی

The critical spare parts (CSP) are vital to machine operation, which also have the characteristic of more expensive, larger demand variation, longer purchasing lead time than non-critical spare parts. Therefore, it is an urgent issue to devise a way to forecast the future requirement of CSP accurately.This investigation proposed Moving back-propagation neural network (MBPN) and Moving fuzzy-neuron network (MFNN) to effectively predict the CSP requirement so as to provide as a reference of spare parts control. This investigation also compare prediction accuracy with other forecasting methods, such as grey prediction method, back-propagation neural network (BPN), fuzzy-neuron networks (FNN). All of the prediction methods evaluated the real data, which are provided by famous wafer testing factories in Taiwan, the effectiveness of the proposed methods is demonstrated through a real case study.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 37, Issue 9, September 2010, Pages 6695–6704
نویسندگان
, , ,