کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
383878 660835 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Parsimonious time series clustering using P-splines
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Parsimonious time series clustering using P-splines
چکیده انگلیسی


• A new parsimonious way to cluster time (data) series is provided.
• We deal with P-spline framework and non-hierarchical clustering.
• Simulation studies and two well-known real world case studies are performed.

We introduce a parsimonious model-based framework for clustering time course data. In these applications the computational burden becomes often an issue due to the large number of available observations. The measured time series can also be very noisy and sparse and an appropriate model describing them can be hard to define. We propose to model the observed measurements by using P-spline smoothers and then to cluster the functional objects as summarized by the optimal spline coefficients. According to the characteristics of the observed measurements, our proposal can be combined with any suitable clustering method. In this paper we provide applications based on non-hierarchical clustering algorithms. We evaluate the accuracy and the efficiency of our proposal by simulations and by analyzing two real data examples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 52, 15 June 2016, Pages 26–38
نویسندگان
, , , ,