کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
383992 660838 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Integrating content-based filtering with collaborative filtering using co-clustering with augmented matrices
ترجمه فارسی عنوان
یکپارچه سازی فیلترینگ مبتنی بر محتوا با فیلتر کردن مشارکتی با استفاده از همکاری خوشه ای با ماتریس های تقویت شده
کلمات کلیدی
همکاری خوشه ای، فیلتر کردن همگانی، اطلاعات متقابل، سیستم توصیه شده، داده های افزوده
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• Co-clustering algorithm with augmented matrix (CCAM).
• A unified framework for content-based filtering and collaborative filtering (CF).
• Comparison of model-based CF and memory-based CF.

Recommender systems have become an important research area because of a high interest from academia and industries. As a branch of recommender systems, collaborative filtering (CF) systems take its roots from sharing opinions with others and have been shown to be very effective for generating high quality recommendations. However, CF often confronts the sparsity problem, caused by fewer ratings against the unknowns that need to be predicted.In this paper, we consider a hybrid approach that combines content-based approach with collaborative filtering under a unified model called co-clustering with augmented matrices (CCAM). CCAM is based on information-theoretic co-clustering but further considers augmented data matrices like user profile and item description. By presenting results with a reduced error of prediction, we show that content-based information can help reduce the sparsity problem through minimizing the mutual information loss of the three data matrices based on CCAM.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 41, Issue 6, May 2014, Pages 2754–2761
نویسندگان
, , ,