کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
384050 660839 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dynamic voltage collapse prediction in power systems using support vector regression
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Dynamic voltage collapse prediction in power systems using support vector regression
چکیده انگلیسی

This paper presents dynamic voltage collapse prediction on an actual power system using support vector regression. Dynamic voltage collapse prediction is first determined based on the PTSI calculated from information in dynamic simulation output. Simulations were carried out on a practical 87 bus test system by considering load increase as the contingency. The data collected from the time domain simulation is then used as input to the SVR in which support vector regression is used as a predictor to determine the dynamic voltage collapse indices of the power system. To reduce training time and improve accuracy of the SVR, the Kernel function type and Kernel parameter are considered. To verify the effectiveness of the proposed SVR method, its performance is compared with the multi layer perceptron neural network (MLPNN). Studies show that the SVM gives faster and more accurate results for dynamic voltage collapse prediction compared with the MLPNN.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 37, Issue 5, May 2010, Pages 3730–3736
نویسندگان
, , ,