کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
384341 660844 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An adaptive single-point algorithm for global numerical optimization
ترجمه فارسی عنوان
یک الگوریتم تک نقطه ای سازگار برای بهینه سازی عددی جهانی
کلمات کلیدی
مشکلات غیر مجاز، بهینه سازی عددی، تپه نوردی، رفتار سازگار
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

This paper describes a novel algorithm for numerical optimization, called Simple Adaptive Climbing (SAC). SAC is a simple efficient single-point approach that does not require a careful fine-tunning of its two parameters. SAC algorithm shares many similarities with local optimization heuristics, such as random walk, gradient descent, and hill-climbing. SAC has a restarting mechanism, and a powerful adaptive mutation process that resembles the one used in Differential Evolution. The algorithms SAC is capable of performing global unconstrained optimization efficiently in high dimensional test functions. This paper shows results on 15 well-known unconstrained problems. Test results confirm that SAC is competitive against state-of-the-art approaches such as micro-Particle Swarm Optimization, CMA-ES or Simple Adaptive Differential Evolution.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 41, Issue 3, 15 February 2014, Pages 877–885
نویسندگان
, , ,