کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
385004 | 660858 | 2009 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Improved kernel fisher discriminant analysis for fault diagnosis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper improves kernel fisher discriminant analysis (KFDA) for fault diagnosis from three aspects. Firstly, a feature vector selection (FVS) scheme based on a geometrical consideration is given to reduce the computational complexity of KFDA when the number of samples becomes large. Secondly, a new kernel function, called the Cosine kernel, is proposed to increase the discriminating capability of the original polynomial kernel function. Thirdly, nearest feature line (NFL) classifier is employed to further enhance the fault diagnosis performance when the sample number is very small. Experimental results show the effectiveness of our methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 2, Part 1, March 2009, Pages 1423–1432
Journal: Expert Systems with Applications - Volume 36, Issue 2, Part 1, March 2009, Pages 1423–1432
نویسندگان
Junhong Li, Peiling Cui,