کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
385222 660863 2012 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Pedestrian detection for intelligent transportation systems combining AdaBoost algorithm and support vector machine
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Pedestrian detection for intelligent transportation systems combining AdaBoost algorithm and support vector machine
چکیده انگلیسی

Pedestrians are the vulnerable participants in transportation system when crashes happen. It is important to detect pedestrian efficiently and accurately in many computer vision applications, such as intelligent transportation systems (ITSs) and safety driving assistant systems (SDASs). This paper proposes a two-stage pedestrian detection method based on machine vision. In the first stage, AdaBoost algorithm and cascading method are adopted to segment pedestrian candidates from image. To confirm whether each candidate is pedestrian or not, a second stage is needed to eliminate some false positives. In this stage, a pedestrian recognizing classifier is trained with support vector machine (SVM). The input features used for SVM training are extracted from both the sample gray images and edge images. Finally, the performance of the proposed pedestrian detection method is tested with real-world data. Results show that the performance is better than conventional single-stage classifier, such as AdaBoost based or SVM based classifier.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 39, Issue 4, March 2012, Pages 4274–4286
نویسندگان
, , , , ,