کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
385280 660864 2008 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Applicability of feed-forward and recurrent neural networks to Boolean function complexity modeling
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Applicability of feed-forward and recurrent neural networks to Boolean function complexity modeling
چکیده انگلیسی

In this paper, we present the feed-forward neural network (FFNN) and recurrent neural network (RNN) models for predicting Boolean function complexity (BFC). In order to acquire the training data for the neural networks (NNs), we conducted experiments for a large number of randomly generated single output Boolean functions (BFs) and derived the simulated graphs for number of min-terms against the BFC for different number of variables. For NN model (NNM) development, we looked at three data transformation techniques for pre-processing the NN-training and validation data. The trained NNMs are used for complexity estimation for the Boolean logic expressions with a given number of variables and sum of products (SOP) terms. Both FFNNs and RNNs were evaluated against the ISCAS benchmark results. Our FFNNs and RNNs were able to predict the BFC with correlations of 0.811 and 0.629 with the benchmark results, respectively.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 34, Issue 4, May 2008, Pages 2436–2443
نویسندگان
, , ,