کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
385301 660864 2008 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Timing of resources exploration in the behavior of firm – Innovative approach and empirical simulation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Timing of resources exploration in the behavior of firm – Innovative approach and empirical simulation
چکیده انگلیسی

We have insight into the importance of resource exploration derived from the quest for sustaining competitive advantage as well as the growth of the firm, which are well-explicated in the resources point of view. However, we really do not know when the firm will seriously commit to this kind of activities. Therefore, this study proposes an innovative approach using quantum minimization (QM) to tune a composite model comprising adaptive neuron-fuzzy inference system (ANFIS) and nonlinear generalized autoregressive conditional heteroscedasticity (NGARCH) such that it constitutes the relationship among five indicators, the growth rate of long-term investment, the firm size, the return on total asset, the return on common equity, and the return on sales. In particularly, this proposed approach outperforms several typical methods such as auto-regressive moving-average regression (ARMAX), back-propagation neural network (BPNN), or adaptive support vector regression (ASVR) for this timing problem in term of comparing their achievement and the goodness-of-fit. Consequently, the preceding methods involved in this problem truly explain the timing of resources exploration in the behavior of firm. Meanwhile, the performance summary among methods is compared quantitatively.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 34, Issue 4, May 2008, Pages 2656–2663
نویسندگان
, ,