کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
385319 660864 2008 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Online option price forecasting by using unscented Kalman filters and support vector machines
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Online option price forecasting by using unscented Kalman filters and support vector machines
چکیده انگلیسی

This study develops a hybrid model that combines unscented Kalman filters (UKFs) and support vector machines (SVMs) to implement an online option price predictor. In the hybrid model, the UKF is used to infer latent variables and make a prediction based on the Black–Scholes formula, while the SVM is employed to model the nonlinear residuals between the actual option prices and the UKF predictions. Taking option data traded in Taiwan Futures Exchange, this study examined the forecasting accuracy of the proposed model, and found that the new hybrid model is superior to pure SVM models or hybrid neural network models in terms of three types of options. This model can help investors for reducing their risk in online trading.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 34, Issue 4, May 2008, Pages 2819–2825
نویسندگان
,