کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
385440 | 660865 | 2011 | 7 صفحه PDF | دانلود رایگان |

In this study, a hierarchical electroencephalogram (EEG) classification system for epileptic seizure detection is proposed. The system includes the following three stages: (i) original EEG signals representation by wavelet packet coefficients and feature extraction using the best basis-based wavelet packet entropy method, (ii) cross-validation (CV) method together with k-Nearest Neighbor (k-NN) classifier used in the training stage to hierarchical knowledge base (HKB) construction, and (iii) in the testing stage, computing classification accuracy and rejection rate using the top-ranked discriminative rules from the HKB. The data set is taken from a publicly available EEG database which aims to differentiate healthy subjects and subjects suffering from epilepsy diseases. Experimental results show the efficiency of our proposed system. The best classification accuracy is about 100% via 2-, 5-, and 10-fold cross-validation, which indicates the proposed method has potential in designing a new intelligent EEG-based assistance diagnosis system for early detection of the electroencephalographic changes.
► Best basis-based wavelet packet entropy feature extraction.
► Hierarchical knowledge base construction.
► EEG classification system.
Journal: Expert Systems with Applications - Volume 38, Issue 11, October 2011, Pages 14314–14320