کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
385440 660865 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection
چکیده انگلیسی

In this study, a hierarchical electroencephalogram (EEG) classification system for epileptic seizure detection is proposed. The system includes the following three stages: (i) original EEG signals representation by wavelet packet coefficients and feature extraction using the best basis-based wavelet packet entropy method, (ii) cross-validation (CV) method together with k-Nearest Neighbor (k-NN) classifier used in the training stage to hierarchical knowledge base (HKB) construction, and (iii) in the testing stage, computing classification accuracy and rejection rate using the top-ranked discriminative rules from the HKB. The data set is taken from a publicly available EEG database which aims to differentiate healthy subjects and subjects suffering from epilepsy diseases. Experimental results show the efficiency of our proposed system. The best classification accuracy is about 100% via 2-, 5-, and 10-fold cross-validation, which indicates the proposed method has potential in designing a new intelligent EEG-based assistance diagnosis system for early detection of the electroencephalographic changes.


► Best basis-based wavelet packet entropy feature extraction.
► Hierarchical knowledge base construction.
► EEG classification system.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 38, Issue 11, October 2011, Pages 14314–14320
نویسندگان
, , ,