کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
385728 660872 2011 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An extended support vector machine forecasting framework for customer churn in e-commerce
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
An extended support vector machine forecasting framework for customer churn in e-commerce
چکیده انگلیسی

In order to accurately forecast and prevent customer churn in e-commerce, a customer churn forecasting framework is established through four steps. First, customer behavior data is collected and converted into data warehouse by extract transform load (ETL). Second, the subject of data warehouse is established and some samples are extracted as train objects. Third, alternative predication algorithms are chosen to train selected samples. Finally, selected predication algorithm with extension is used to forecast other customers. For the imbalance and nonlinear of customer churn, an extended support vector machine (ESVM) is proposed by introducing parameters to tell the impact of churner, non-churner and nonlinear. Artificial neural network (ANN), decision tree, SVM and ESVM are considered as alternative predication algorithms to forecast customer churn with the innovative framework. Result shows that ESVM performs best among them in the aspect of accuracy, hit rate, coverage rate, lift coefficient and treatment time. This novel ESVM can process large scale and imbalanced data effectively based on the framework.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 38, Issue 3, March 2011, Pages 1425–1430
نویسندگان
, , , ,