کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
385775 660872 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fault diagnosis of ball bearings using machine learning methods
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Fault diagnosis of ball bearings using machine learning methods
چکیده انگلیسی

Ball bearings faults are one of the main causes of breakdown of rotating machines. Thus, detection and diagnosis of mechanical faults in ball bearings is very crucial for the reliable operation. This study is focused on fault diagnosis of ball bearings using artificial neural network (ANN) and support vector machine (SVM). A test rig of high speed rotor supported on rolling bearings is used. The vibration response are obtained and analyzed for the various defects of ball bearings. The specific defects are considered as crack in outer race, inner race with rough surface and corrosion pitting in balls. Statistical methods are used to extract features and to reduce the dimensionality of original vibration features. A comparative experimental study of the effectiveness of ANN and SVM is carried out. The results show that the machine learning algorithms mentioned above can be used for automated diagnosis of bearing faults. It is also observed that the severe (chaotic) vibrations occur under bearings with rough inner race surface and ball with corrosion pitting.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 38, Issue 3, March 2011, Pages 1876–1886
نویسندگان
, , ,