کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
385911 | 660874 | 2006 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Modelling sovereign credit ratings: Neural networks versus ordered probit
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Sovereign credit ratings are becoming increasingly important both within a financial regulatory context and as a necessary prerequisite for the development of emerging capital markets. Using a comprehensive dataset of rating agencies and countries over the period 1989-1999, this paper demonstrates that artificial neural networks (ANN) represent a superior technology for calibrating and predicting sovereign ratings relative to ordered probit modelling, which has been considered by the previous literature to be the most successful econometric approach. ANN have been applied to classification problems with great success over a wide range of applications where there is an absence of a precise theoretical model to underpin the relationships in the data. The results for sovereign credit ratings presented here corroborate other researchers' findings that ANN are highly effective classifiers.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 30, Issue 3, April 2006, Pages 415-425
Journal: Expert Systems with Applications - Volume 30, Issue 3, April 2006, Pages 415-425
نویسندگان
Julia A. Bennell, David Crabbe, Stephen Thomas, Owain ap Gwilym,