کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
385925 660875 2014 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A robust arbitrary text detection system for natural scene images
ترجمه فارسی عنوان
سیستم قوی تشخیص متن دلخواه برای تصاویر صحنه طبیعی
کلمات کلیدی
تشخیص متن دلخواه، خواص غیر قابل تعویض، ویژگی های تقارن، رشد بیضه، تأیید متن ترمیم متن
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• We explore the property that pattern in both Sobel and Canny share the same feature.
• New invariant symmetric features to classify text and non-text pixels correctly.
• We exploit SIFT features to eliminate non-text components.
• Ellipse growing to extract curved text lines using text representatives.
• New objective heuristics to eliminate false positives.

Text detection in the real world images captured in unconstrained environment is an important yet challenging computer vision problem due to a great variety of appearances, cluttered background, and character orientations. In this paper, we present a robust system based on the concepts of Mutual Direction Symmetry (MDS), Mutual Magnitude Symmetry (MMS) and Gradient Vector Symmetry (GVS) properties to identify text pixel candidates regardless of any orientations including curves (e.g. circles, arc shaped) from natural scene images. The method works based on the fact that the text patterns in both Sobel and Canny edge maps of the input images exhibit a similar behavior. For each text pixel candidate, the method proposes to explore SIFT features to refine the text pixel candidates, which results in text representatives. Next an ellipse growing process is introduced based on a nearest neighbor criterion to extract the text components. The text is verified and restored based on text direction and spatial study of pixel distribution of components to filter out non-text components. The proposed method is evaluated on three benchmark datasets, namely, ICDAR2005 and ICDAR2011 for horizontal text evaluation, MSRA-TD500 for non-horizontal straight text evaluation and on our own dataset (CUTE80) that consists of 80 images for curved text evaluation to show its effectiveness and superiority over existing methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 41, Issue 18, 15 December 2014, Pages 8027–8048
نویسندگان
, , , ,