کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
386064 | 660877 | 2010 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Integrating recurrent SOM with wavelet-based kernel partial least square regressions for financial forecasting
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This study implements a novel expert system for financial forecasting. In the first stage, wavelet analysis transforms the input space of raw data to a time-scale feature space suitable for financial forecasting, and then a Recurrent Self-Organizing Map (RSOM) algorithm is used for partitioning and storing temporal context of the feature space. In the second stage, multiple kernel partial least square regressors (as local models) that best fit partitioned regions are constructed for final forecasting. Compared with neural networks, pure SVMs or traditional GARCH models, the proposed model performs best. The root-mean-squared forecasting errors are significantly reduced.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 37, Issue 8, August 2010, Pages 5698–5705
Journal: Expert Systems with Applications - Volume 37, Issue 8, August 2010, Pages 5698–5705
نویسندگان
Shian-Chang Huang, Tung-Kuang Wu,