کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
386085 | 660877 | 2010 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the extraction of rules in the identification of bearing defects in rotating machinery using decision tree
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A methodology for the extraction of expert rules in the identification of bearing defects in rotating machinery is presented. Data sets are collected from signals measured by piezoelectric accelerometer fixed on bearings of an experimental set-up. Temporal and frequential analyses are then conducted to determine statistical parameters (crest factor (CF), kurtosis, root mean square) and spectrums (Fast Fourier Transform, envelope spectrum). The decision tree is then constructed by applying C4.5 algorithm on the dataset, and thus expert rules are established. The efficiency and applicability of expert rules over rules resulting from human experiments in rotating machinery maintenance is shown throughout the present study.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 37, Issue 8, August 2010, Pages 5887–5894
Journal: Expert Systems with Applications - Volume 37, Issue 8, August 2010, Pages 5887–5894
نویسندگان
Mouloud Boumahdi, Jean-Paul Dron, Saïd Rechak, Olivier Cousinard,