کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
386285 660882 2006 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Model gene network by semi-fixed Bayesian network
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Model gene network by semi-fixed Bayesian network
چکیده انگلیسی

Gene networks describe functional pathways in a given cell or tissue, representing processes such as metabolism, gene expression regulation, and protein or RNA transport. Thus, learning gene network is a crucial problem in the post genome era. Most existing works learn gene networks by assuming one gene provokes the expression of another gene directly leading to an over-simplified model. In this paper, we show that the gene regulation is a complex problem with many hidden variables. We propose a semi-fixed model to represent the gene network as a Bayesian network with hidden variables. In addition, an effective algorithm based on semi-fixed structure learning is proposed to learn the model. Experimental results and comparison with the-state-of-the-art learning algorithms on artificial and real-life datasets confirm the effectiveness of our approach.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 30, Issue 1, January 2006, Pages 42–49
نویسندگان
, , ,