کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
386334 660883 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel intrusion detection system based on hierarchical clustering and support vector machines
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A novel intrusion detection system based on hierarchical clustering and support vector machines
چکیده انگلیسی

This study proposed an SVM-based intrusion detection system, which combines a hierarchical clustering algorithm, a simple feature selection procedure, and the SVM technique. The hierarchical clustering algorithm provided the SVM with fewer, abstracted, and higher-qualified training instances that are derived from the KDD Cup 1999 training set. It was able to greatly shorten the training time, but also improve the performance of resultant SVM. The simple feature selection procedure was applied to eliminate unimportant features from the training set so the obtained SVM model could classify the network traffic data more accurately. The famous KDD Cup 1999 dataset was used to evaluate the proposed system. Compared with other intrusion detection systems that are based on the same dataset, this system showed better performance in the detection of DoS and Probe attacks, and the beset performance in overall accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 38, Issue 1, January 2011, Pages 306–313
نویسندگان
, , , , , , ,