کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
386508 660885 2010 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improved identification of Hammerstein plants using new CPSO and IPSO algorithms
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Improved identification of Hammerstein plants using new CPSO and IPSO algorithms
چکیده انگلیسی

Identification of Hammerstein plants finds extensive applications in stability analysis and control design. For identification of such complex plants, the recent trend of research is to employ nonlinear network and to train their weights by evolutionary computing tools. In recent years the area of Artificial Immune System (AIS) has drawn attention of many researchers due to its broad applicability to different fields. In this paper by combining the principles of AIS and PSO, we propose two new but simple hybrid algorithms called Clonal PSO (CPSO) and Immunized PSO (IPSO) which involve less complexity and offers better identification performance. Identification of few benchmark Hammerstein models is carried out through simulation study and the results obtained are compared with those obtained by standard PSO, Clonal and GA based methods. Various simulation results demonstrate that IPSO algorithm offers best identification performance compared to the other algorithms. Out of the two algorithms proposed, the CPSO is computationally simpler but offers identification performance nearly similar to its PSO counterpart.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 37, Issue 10, October 2010, Pages 6818–6831
نویسندگان
, , ,