کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
386531 | 660885 | 2010 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Feature selection with Intelligent Dynamic Swarm and Rough Set
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Data mining is the most commonly used name to solve problems by analyzing data already present in databases. Feature selection is an important problem in the emerging field of data mining which is aimed at finding a small set of rules from the training data set with predetermined targets. Many approaches, methods and goals including Genetic Algorithms (GA) and swarm-based approaches have been tried out for feature selection in order to these goals. Furthermore, a new technique which named Particle Swarm Optimization (PSO) has been proved to be competitive with GA in several tasks, mainly in optimization areas. However, there are some shortcomings in PSO such as premature convergence. To overcome these, we propose a new evolutionary algorithm called Intelligent Dynamic Swarm (IDS) that is a modified Particle Swarm Optimization. Experimental results states competitive performance of IDS. Due to less computing for swarm generation, averagely IDS is over 30% faster than traditional PSO.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 37, Issue 10, October 2010, Pages 7026-7032
Journal: Expert Systems with Applications - Volume 37, Issue 10, October 2010, Pages 7026-7032
نویسندگان
Changseok Bae, Wei-Chang Yeh, Yuk Ying Chung, Sin-Long Liu,