کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
386549 | 660885 | 2010 | 8 صفحه PDF | دانلود رایگان |

The main purpose of this paper is to use off-the-shelf devices to develop a fall detection system. In human body identification, human body silhouette is adopted to improve privacy protection, and vertical projection histograms of the silhouette image and statistical scheme are used to reduce the effect of human body upper limb activities. The kNN classification algorithm is used to classify the postures using the ratio and difference of human body silhouette bounding box height and width. Meanwhile, since time difference is a vital factor to differentiate fall incident event and lying down event, the critical time difference is obtained from the experiment and verified by statistical hypothesis testing. With the help of the kNN classifier and the critical time difference, a fall incident detection system is developed to detect fall incident events. The experiment shows that it could reduce the effect of upper limb activities and the system has a correct rate of 84.44% on fall detection and lying down event detection.
Journal: Expert Systems with Applications - Volume 37, Issue 10, October 2010, Pages 7174–7181