کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
386628 660889 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A hybrid recommendation technique based on product category attributes
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A hybrid recommendation technique based on product category attributes
چکیده انگلیسی

Recommender systems are powerful tools that allow companies to present personalized offers to their customers and defined as a system which recommends an appropriate product or service after learning the customers’ preferences and desires. Extracting users’ preferences through their buying behavior and history of purchased products is the most important element of such systems. Due to users’ unlimited and unpredictable desires, identifying their preferences is very complicated process. In most researches, less attention has been paid to user’s preferences varieties in different product categories. This may decrease quality of recommended items. In this paper, we introduced a technique of recommendation in the context of online retail store which extracts user preferences in each product category separately and provides more personalized recommendations through employing product taxonomy, attributes of product categories, web usage mining and combination of two well-known filtering methods: collaborative and content-based filtering. Experimental results show that proposed technique improves quality, as compared to similar approaches.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 9, November 2009, Pages 11480–11488
نویسندگان
, ,