کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
386663 | 660889 | 2009 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A fuzzy clustering algorithm based on evolutionary programming
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, a fuzzy clustering method based on evolutionary programming (EPFCM) is proposed. The algorithm benefits from the global search strategy of evolutionary programming, to improve fuzzy c-means algorithm (FCM). The cluster validity can be measured by some cluster validity indices. To increase the convergence speed of the algorithm, we exploit the modified algorithm to change the number of cluster centers dynamically. Experiments demonstrate EPFCM can find the proper number of clusters, and the result of clustering does not depend critically on the choice of the initial cluster centers. The probability of trapping into the local optima will be very lower than FCM.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 9, November 2009, Pages 11792–11800
Journal: Expert Systems with Applications - Volume 36, Issue 9, November 2009, Pages 11792–11800
نویسندگان
Hongbin Dong, Yuxin Dong, Cheng Zhou, Guisheng Yin, Wei Hou,