کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
386791 660891 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Novel Adaptive Charged System Search algorithm for optimal tuning of fuzzy controllers
ترجمه فارسی عنوان
الگوریتم جستجوی سیستم تحلیلی رمان برای تنظیم بهینه از کنترل کننده های فازی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• An Adaptive Charged System Search (ACSS) algorithm is proposed.
• The ACSS algorithm consists of five stages.
• An ACSS-based design and tuning method for Takagi–Sugeno fuzzy controllers is offered.
• The optimal tuning of fuzzy controllers with a reduced process parametric sensitivity is given.

This paper proposes a novel Adaptive Charged System Search (ACSS) algorithm for the optimal tuning of Takagi–Sugeno proportional–integral fuzzy controllers (T–S PI-FCs). The five stages of this algorithm, namely the engagement, exploration, explanation, elaboration and evaluation, involve the adaptation of the acceleration, velocity, and separation distance parameters to the iteration index, and the substitution of the worst charged particles’ fitness function values and positions with the best performing particle data. The ACSS algorithm solves the optimization problems aiming to minimize the objective functions expressed as the sum of absolute control error plus squared output sensitivity function, resulting in optimal fuzzy control systems with reduced parametric sensitivity. The ACSS-based tuning of T–S PI-FCs is applied to second-order servo systems with an integral component. The ACSS algorithm is validated by an experimental case study dealing with the optimal tuning of a T–S PI-FC for the position control of a nonlinear servo system.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 41, Issue 4, Part 1, March 2014, Pages 1168–1175
نویسندگان
, , , , ,