کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
386861 660892 2008 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An empirical validation of a neural network model for software effort estimation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
An empirical validation of a neural network model for software effort estimation
چکیده انگلیسی

As software becomes more complex and its scope dramatically increases, the importance of research on developing methods for estimating software development efforts has perpetually increased. Such accurate estimation has a prominent impact on the success of projects. Out of the numerous methods for estimating software development efforts that have been proposed, line of code (LOC)-based constructive cost model (COCOMO), function point-based regression model (FP), neural network model (NN), and case-based reasoning (CBR) are among the most popular models. Recent research has tended to focus on the use of function points (FPs) in estimating the software development efforts, however, a precise estimation should not only consider the FPs, which represent the size of the software, but should also include various elements of the development environment for its estimation. Therefore, this study is designed to analyze the FPs and the development environments of recent software development cases. The primary purpose of this study is to propose a precise method of estimation that takes into account and places emphasis on the various software development elements. This research proposes and evaluates a neural network-based software development estimation model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 35, Issue 3, October 2008, Pages 929–937
نویسندگان
, ,