کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
386884 660892 2008 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Incremental clustering of mixed data based on distance hierarchy
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Incremental clustering of mixed data based on distance hierarchy
چکیده انگلیسی

Clustering is an important function in data mining. Its typical application includes the analysis of consumer’s materials. Adaptive resonance theory network (ART) is very popular in the unsupervised neural network. Type I adaptive resonance theory network (ART1) deals with the binary numerical data, whereas type II adaptive resonance theory network (ART2) deals with the general numerical data. Several information systems collect the mixing type attitudes, which included numeric attributes and categorical attributes. However, ART1 and ART2 do not deal with mixed data. If the categorical data attributes are transferred to the binary data format, the binary data do not reflect the similar degree. It influences the clustering quality. Therefore, this paper proposes a modified adaptive resonance theory network (M-ART) and the conceptual hierarchy tree to solve similar degrees of mixed data. This paper utilizes artificial simulation materials and collects a piece of actual data about the family income to do experiments. The results show that the M-ART algorithm can process the mixed data and has a great effect on clustering.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 35, Issue 3, October 2008, Pages 1177–1185
نویسندگان
, ,