کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
386900 | 660892 | 2008 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A comparative study on classification of features by SVM and PSVM extracted using Morlet wavelet for fault diagnosis of spur bevel gear box
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The condition of an inaccessible gear in an operating machine can be monitored using the vibration signal of the machine measured at some convenient location and further processed to unravel the significance of these signals. This paper deals with the effectiveness of wavelet-based features for fault diagnosis using support vector machines (SVM) and proximal support vector machines (PSVM). The statistical feature vectors from Morlet wavelet coefficients are classified using J48 algorithm and the predominant features were fed as input for training and testing SVM and PSVM and their relative efficiency in classifying the faults in the bevel gear box was compared.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 35, Issue 3, October 2008, Pages 1351–1366
Journal: Expert Systems with Applications - Volume 35, Issue 3, October 2008, Pages 1351–1366
نویسندگان
N. Saravanan, V.N.S. Kumar Siddabattuni, K.I. Ramachandran,