کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
387004 | 660893 | 2009 | 6 صفحه PDF | دانلود رایگان |

In order to successfully calibrate a numerical model, multiple criteria should be considered. Multi-objective genetic algorithms (MOGAs) have proved effective in numerous such applications, where most of the techniques relying on the condition of Pareto efficiency to compare different solutions. In this paper, a new non-dominated sorting particle swarm optimisation (NSPSO), is proposed, that combines the operations (fast ranking of non-dominated solutions, crowding distance ranking and elitist strategy of combining parent population and offspring population together) of a known MOGA NSGA-II and the other advanced operations (selection and mutation operations) with a single particle swarm optimisation (PSO). The efficacy of this algorithm is demonstrated on the calibration of a rainfall–runoff model, and the comparison is made with the NSGA-II. The simulation results suggest that the proposed optimisation framework is able to achieve good solutions as well diversity compared to the NSGA-II optimisation framework.
Journal: Expert Systems with Applications - Volume 36, Issue 5, July 2009, Pages 9533–9538