کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
387043 | 660895 | 2013 | 10 صفحه PDF | دانلود رایگان |

• Two new prediction models are proposed and compared to demonstrate their merits.
• First model is an integration of Fuzzy C-Means (FCM) and the Apriori algorithm.
• Second model is an integration of FCM and the multiple support thresholds approach.
• Models are evaluated using a road traffic data set and Abalone benchmark data set.
This paper presents an investigation into two fuzzy association rule mining models for enhancing prediction performance. The first model (the FCM–Apriori model) integrates Fuzzy C-Means (FCM) and the Apriori approach for road traffic performance prediction. FCM is used to define the membership functions of fuzzy sets and the Apriori approach is employed to identify the Fuzzy Association Rules (FARs). The proposed model extracts knowledge from a database for a Fuzzy Inference System (FIS) that can be used in prediction of a future value. The knowledge extraction process and the performance of the model are demonstrated through two case studies of road traffic data sets with different sizes. The experimental results show the merits and capability of the proposed KD model in FARs based knowledge extraction. The second model (the FCM–MSapriori model) integrates FCM and a Multiple Support Apriori (MSapriori) approach to extract the FARs. These FARs provide the knowledge base to be utilized within the FIS for prediction evaluation. Experimental results have shown that the FCM–MSapriori model predicted the future values effectively and outperformed the FCM–Apriori model and other models reported in the literature.
Journal: Expert Systems with Applications - Volume 40, Issue 17, 1 December 2013, Pages 6928–6937