کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
387200 660897 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mining the customer credit using hybrid support vector machine technique
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Mining the customer credit using hybrid support vector machine technique
چکیده انگلیسی

Credit scoring has become a critical and challenging management science issue, as the credit industry has been facing fiercer competition in recent years. Many methods have been suggested to tackle this problem in the literature. In this paper, we proposed hybrid support vector machine technique based on three strategies: (1) using CART to select input features, (2) using MARS to select input features, (3) using grid search to optimize model parameters. In order to verify the feasibility and effectiveness of the proposed hybrid SVM model, one credit card dataset provided by a local bank in China is used in this study. Analytic results demonstrate that the hybrid SVM technique not only has the best classification rate, but also has the lowest Type II error in comparison with CART, MARS and SVM and justify the presumptions that SVM having better capability of capturing nonlinear relationship among variables.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 4, May 2009, Pages 7611–7616
نویسندگان
, , ,