کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
387260 660897 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-class support vector machine for classification of the ultrasonic images of supraspinatus
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Multi-class support vector machine for classification of the ultrasonic images of supraspinatus
چکیده انگلیسی

This article proposes an effort to apply the multi-class support vector machine classifiers to classify the supraspinatus image into different disease groups that are normal, tendon inflammation, calcific tendonitis and supraspinatus tear. The supraspinatus tendon is often involved in the above-mentioned disease groups. Four different texture analysis methods – texture feature coding method, gray-level co-occurrence matrix, fractal dimension evaluation and texture spectrum – are used to extract features of tissue characteristic in the ultrasonic supraspinatus images. The mutual information criterion is adopted to select the powerful features from ones generated from the above-mentioned four texture analysis methods in the training stage, meanwhile, the five implementations of multi-class support vector machine classifiers are also designed to discriminate each image into one of the four disease groups in the classification stage. In experiments, the most commonly used performance measures including sensitivity, specificity, classification accuracy and false-negative rate are applied to evaluate the classification of the five implantations of multi-class support vector machines. In addition, the receiver operating characteristics analysis is also used to analyze the classification capability. The present results demonstrate that the implementation of multi-class fuzzy support vector machine can achieve 90% classification accuracy, and performance measures of this implementation are significantly superior to the others.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 4, May 2009, Pages 8124–8133
نویسندگان
,