کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
387322 660900 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A spatially-constrained normalized Gamma process prior
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A spatially-constrained normalized Gamma process prior
چکیده انگلیسی

In this work, we propose a novel nonparametric Bayesian method for clustering of data with spatial interdependencies. Specifically, we devise a novel normalized Gamma process, regulated by a simplified (pointwise) Markov random field (Gibbsian) distribution with a countably infinite number of states. As a result of its construction, the proposed model allows for introducing spatial dependencies in the clustering mechanics of the normalized Gamma process, thus yielding a novel nonparametric Bayesian method for spatial data clustering. We derive an efficient truncated variational Bayesian algorithm for model inference. We examine the efficacy of our approach by considering an image segmentation application using a real-world dataset. We show that our approach outperforms related methods from the field of Bayesian nonparametrics, including the infinite hidden Markov random field model, and the Dirichlet process prior.


► A Markov random field-regulated normalized Gamma process is proposed.
► We postulate a simplified point-wise MRF that regulates the normalized Gamma process.
► Our construction facilitates nonparametric clustering of data with spatial interdependencies.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 39, Issue 17, 1 December 2012, Pages 13019–13025
نویسندگان
, , ,