کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
387338 660901 2010 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Malicious web content detection by machine learning
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Malicious web content detection by machine learning
چکیده انگلیسی

The recent development of the dynamic HTML gives attackers a new and powerful technique to compromise computer systems. A malicious dynamic HTML code is usually embedded in a normal webpage. The malicious webpage infects the victim when a user browses it. Furthermore, such DHTML code can disguise itself easily through obfuscation or transformation, which makes the detection even harder. Anti-virus software packages commonly use signature-based approaches which might not be able to efficiently identify camouflaged malicious HTML codes. Therefore, our paper proposes a malicious web page detection using the technique of machine learning. Our study analyzes the characteristic of a malicious webpage systematically and presents important features for machine learning. Experimental results demonstrate that our method is resilient to code obfuscations and can correctly determine whether a webpage is malicious or not.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 37, Issue 1, January 2010, Pages 55–60
نویسندگان
, , , , ,